a2 United States Patent
Woodward

US009342277B2

US 9,342,277 B2
May 17, 2016

(10) Patent No.:
(45) Date of Patent:

(54) METHOD OF SEARCHING DATA
ASSOCIATED WITH NODES OF A

(71)

(72)

(73)

")

@
(22)

(65)

(1)
(52)

(58)

GRAPHICAL PROGRAM

Applicant: Oracle International Corporation,
Redwood Shores, CA (US)

Inventor: Richard James Woodward, Havelock
North (NZ)

Assignee: ORACLE INTERNATIONAL
CORPORATION, Redwood Shores,
CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 109 days.

Appl. No.: 13/828,005

Filed: Mar. 14,2013

Prior Publication Data

US 2014/0282364 Al Sep. 18, 2014

Int. CI.

GO6F 9/44 (2006.01)

U.S. CL

CPC e GO6F 8/34 (2013.01)

Field of Classification Search

CPC e GOG6F 8/34; GOG6F 8/10

USPC ..

717/105, 109, 113, 125

See application file for complete search history.

©

(56) References Cited
U.S. PATENT DOCUMENTS
7,680,939 B2* 3/2010 Trevoretal. 709/226
7,844,640 B2* 11/2010 Bender et al. 707/805
7,949,569 B2 5/2011 Maes ..o.ccooevvivveniiieis 705/26
8,327,280 B2 12/2012 Nattinger 715/763
8,464,221 B2* 6/2013 Zheng et al. .o 7177124
2003/0101253 Al* 5/2003 Saito etal. 709/223
2006/0074870 Al* 4/2006 Brilletal.cccccoevveenenn. 707/3
2006/0143570 Al* 6/2006 Washington et al. ... 715/763
2007/0172040 Al* 7/2007 Cesarinietal. 379/126
2010/0011302 Al* 1/2010 Steinetal.ccccoeeen. 715/753
2012/0158553 Al* 6/2012 Sudhidhanakul etal. 705/28
2014/0074888 Al™* 3/2014 Potteretal.ccoee. 707/779

* cited by examiner

Primary Examiner — Anna Deng
(74) Attorney, Agent, or Firm — Precision IP

(57) ABSTRACT

A method and apparatus for searching data associated with
nodes of a visual or graphical program. The method may
include the acts of searching information stored in memory
using search criteria that was entered into a search box of a
Graphical User Interface. The information searched is asso-
ciated with nodes of the graphical program. In response to the
searching, identifying one or more of the nodes. In one
embodiment, the method may further include displaying one
or more links corresponding to the identified one or more of
the nodes, respectively, in response to the identifying.

24 Claims, 11 Drawing Sheets

aoo
ooo
ooo

102

Graphical
Program
Editor

Development
Server

C%)nlin.e
arging
System

Production
Server

114 10

U.S. Patent May 17, 2016 Sheet 1 of 11 US 9,342,277 B2

102

ooo
ooo
ooo

102

oa
oo
oo

/116
: Online
gﬂg Graphical charai
ging
Pegan | L | Siem

[
Development Production
Server Server

! 14 ! 10

FIG. 1

U.S. Patent May 17, 2016 Sheet 2 of 11 US 9,342,277 B2

112
116
208 Graphical Program
ESE - - Editor
Interface [+—=
206
Search
| Engine
202
A

Y 114

FIG. 2

& OLAd

US 9,342,277 B2

<=
o

Sheet 3 of 11

<t
o)

May 17, 2016

0e

SJusA]
suonesadQ ejeq
_o%_hmﬂsm
ulbJeyd

0Le cle

y | Y, aseq

[aY) sjool 9|i4

Jo)ip3 welbold ®

U.S. Patent

US 9,342,277 B2

Sheet 4 of 11

May 17, 2016

U.S. Patent

yooord
90¢
o1¢
0¢
SJusAg
. »Ob | ¥ youmg aiweuAq || suonessdo ejeq
1425 36 Iled pu3g s%_a%%m
718 i pu3 uibieys
o_‘m Y, [Jues aseg
)]
[aY] sjool 9|4
10))p3 weiboid ®
Z0¢

g 9Id

US 9,342,277 B2

(=]
[ap

Sheet 5 of 11

~r
o

May 17, 2016

/]
pu3

[{e]
(o=
[ap)

SJUSAT
O suonesedo ejeq

YEIS 19qUISqNG
ol 716 Buibieyn

y | Y, aseq

ay) slooL o

Jo)ip3 welbold @

U.S. Patent

US 9,342,277 B2

Sheet 6 of 11

May 17, 2016

U.S. Patent

9 9Id

(<=
~—
o

~F
-—
o)

©
[
o

0l€
/

VO
Buibreyn

O
TS

cle

/

0€

SJUSAT
suoiesado ejeq
Jaquosqng
buibieyn

aseq

ay

sjool @yl

Jo)ip3 weiboid ®

US 9,342,277 B2

Sheet 7 of 11

May 17, 2016

U.S. Patent

L TOIA
90¢
O
uoneauoN | |
puas -
Tn [£] Ed
sne)g 190y ¥0¢
Buibieyn
SJUSAT
. O suonesedo eleq
445 uelS Joquosqgng
Buibieyn
0l cle " ose
./ @
' Y] §j0ol 9|4
Jo)p3 welboid ®
20¢

US 9,342,277 B2

Sheet 8 of 11

May 17, 2016

U.S. Patent

& OId

abenbueoNTzZ

[SIowoy | [o7es |

SIBMSS | | sayouesg X3

A] _ usibua] ebenbue | 08
9% A Auy | adAL eleq
AJIJON |aWEN apoN
pug uoReoLoN puas ainbiyuo) i
S)SIX3 SpON = g
B —
m%wﬁm s% UOHjeolloN voE
UILIooU| PUSS [T .
b
Snjels Jooy S SJUSA]
. VO suopeladQ ejeq
I€ Buibiey? | Jaquosgng
Buibieyn
UONBOYNON puas w I Wm tM_m aseg
| / ay siool 9|l
Jo)ip3 weiboid ®

6 914

US 9,342,277 B2

Sheet 9 of 11

May 17, 2016

SjueA]
suonesadQ ejeq
laquosgng
Buibieyn

aseq

I
-—
™)

(<=
(=
o

Sjool 9yl

Jojip3 welboid ®

U.S. Patent

3

0oL 914

US 9,342,277 B2

(3p/]

Sheet 10 of 11

May 17, 2016

JH
M
|_|_|I

L+]

Z
\Noo | 70¢
aoel|
painByuooun
sIgjoweled
SjusLIWo) @ SJUsAg

BLEN Uouelg JIxJ suojesedQ eleq

=S
[

753 JsquinN spoN g _ — Jaquosqng
adf] v00l o] %€ BuIBIEY
IV
| aY) sjooL 94
S0 STl 10)pg weiboid ®

U.S. Patent

US 9,342,277 B2

Sheet 11 of 11

May 17, 2016

U.S. Patent

LEOTA
$8800.d [BIIU|
aweN
slewlo4 aiinbay
SJusWILIOD
NALS1SS ¢
abessapy puas 'z
Joug °|
SOPON 1Ix3 m_._ @ m_| —_—
E 001 v0E
Ues '
sopoN Buiwooy)
— []
1455 SJUSAT
HelS suonessdQ ejeq
—_ Jaquosgng
X8 Jewlo ‘g 90€ buibieyn
| X8l jewiod '} | aseqg
_ | JEULIO] [aY| SjooL 94
~01 45 Joyp3 wesboid ®
20¢g

US 9,342,277 B2

1
METHOD OF SEARCHING DATA
ASSOCIATED WITH NODES OF A
GRAPHICAL PROGRAM

BACKGROUND

In computing, graphical programming (also known as
visual programming) lets users create programs by manipu-
lating program elements graphically rather than by specifying
them textually. A graphical program may include a plurality
of visually interconnected nodes that collectively indicate
functionality. The graphical program may be represented in
memory of a computer system as integrated data structures
and/or program instructions. These data structures and/or
program instructions may be compiled or interpreted to pro-
duce machine language that accomplishes the functionality of
the graphical program.

A user may build a graphical program via a graphical user
interface (GUI) by selectively adding various nodes that rep-
resent various functions. The nodes may be connected by
lines representing data flow, control flow, or execution flow.
Thus the graphical program may include a plurality of inter-
connected nodes that graphically defines a procedure for
accomplishing certain results, such as manipulating one or
more input variables and/or producing one or more output
variables.

The GUI may include various user interface panels. A
canvas panel of the GUI displays the graphical program. A
palette panel may include a list of distinct nodes that can be
dragged and dropped by the user onto the canvas panel as
node instances. Nodes placed on the canvas panel inherit the
attributes and properties of the nodes of the palette panel.
Once placed on the canvas panel, a user can configure the
nodes with data in accordance with the functions they will
perform, and connect the nodes to create a program control
flow. When finished the instructions and/or data structures
representing the interconnected nodes, including the configu-
ration data, can be stored in memory for subsequent compi-
lation or interpretation into machine code.

SUMMARY

A method and apparatus for searching data associated with
nodes of a graphical program. The method may include the
acts of searching information stored in memory using search
criteria that was entered into a search box of a GUI. The
information searched is associated with nodes of the graphi-
cal program. In response to the searching, the method further
includes the act of identifying one or more ofthe nodes. In one
embodiment, the method may further include displaying one
or more links corresponding to the identified one or more of
the nodes, respectively, in response to the identifying.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention may be better understood, and its
numerous objects, features, and advantages made apparent to
those skilled in the art by referencing the accompanying
drawings.

FIG. 1 illustrates components of an example system that
implements one embodiment of the present invention.

FIG. 2 illustrates components of an example development
server that implements one embodiment of the present inven-
tion.

FIGS. 3-11 are graphical representations of example GUIs
displayed by a computer system in accordance one embodi-
ment of the present invention.

10

15

20

25

30

35

40

45

50

55

60

65

2

The use of the same reference symbols in different draw-
ings indicates similar or identical items.

DETAILED DESCRIPTION
Overview

Graphical programming can be used in many businesses to
create different types of complex programs. A communica-
tion service provider (CSP) is an example of one type of
business that employs graphical programming. The present
invention will be described with reference to creating or
modifying graphical programs for use by CSPs, it being
understood the present invention should not be limited
thereto.

CSPs offer numerous services to customers via one or more
wired and/or wireless communication systems. Example ser-
vices include voice, data, texting, etc. Customers of CSP’s
can use these services via devices such as smart phones, tablet
computers, etc. The present invention will be described with
reference a CSP providing services to customers via smart
phones it being understood the present invention should not
be limited thereto.

CSPs provide services according to service plan agree-
ments that specify the charges the customers pay for using the
services. In prepaid service plan agreements credit is typi-
cally purchased by customers in advance and held in
accounts. The purchased credit is applied when a service is
used. If there is no available credit in the customer’s account
then use of the requested service is often denied. In post paid
service plan agreements a customer typically enters a long-
term contract (generally lasting 12, 18 or 24 months) or a
short term contract (also commonly referred to as a rolling
contract or a 30-day renewable contract) with the CSP. Post
paid service plan agreements often limit the quantity of data
or voice minutes used by the customers on a monthly basis.
When a monthly limit is reached, customers may be charged
for extra bytes of data, or customers may be charged for extra
minutes of a telephone call.

An important aspect of the operation of a CSP is the effi-
cient and accurate billing of customers for the services they
use. CSPs implement a program commonly referred to as
charging systems to track, control and charge customers use
of services. Intelligent network (IN) systems is also a term
that is used to designate systems that, for example, control
telephony services (e.g. 1800 number service). Basically, a
charging system can be fed data for all customer use of
services such as telephone calls, and in response the charging
system controls and charges for the individual customer’s
use.

Charging systems come in a variety of forms. Online
charging systems (OCS) operate in real time. Offline charging
systems (OFCS) typically operate on a batch process basis.
The online charging system may include several logical func-
tions such as a control function (including session based and
event based control functions), a rating function (which
essentially tells you how much a given service will cost), an
account and balance management function (which updates
and returns balances and statuses of accounts in real-time).
The logical functions can be independent components, or
they can be combined together as one component. For pur-
poses of explanation only, the present invention will be
described with reference to an online charging system that
contains a control function that includes both session (e.g.
voice calls, data sessions) based and event (e.g. SMS/text

US 9,342,277 B2

3

messages) based control functions. It should be understood
that online charging systems may include additional func-
tions.

When a customer request to use a service (e.g., internet
access, telephone call, etc.) is received, a simple online charg-
ing system can authenticate the customer’s identity and check
the customer’s account balance before giving authorization to
use the requested service, immediately deduct fees from the
customer’s account, and terminate the service upon expira-
tion of the customer’s account balance. Online charging sys-
tems, however, can be substantially more complex. To illus-
trate, when a telephone call request is received, a more
sophisticated online charging system may determine whether
the request is for a new prepaid customer of the CSP, and if so
the online charging system may determine whether the cus-
tomer has activated an account for the requested service. If a
new prepaid customer has not activated an account, the online
charging system may send a pre-recorded message to the
customer’s smart phone, which asks the customer for infor-
mation needed to activate an account. Complex online charg-
ing systems may also send short message notifications to
customers after telephone calls to let them know the cost or
duration of the calls. These are just a few examples of more
complex online charging system functions.

Online charging systems may take form in a program or
software instructions executing on one or more computers
(e.g., severs). Prior to graphical programming, text based
programming languages were used by teams of programmers
to build new or modify existing online charging systems.
Once built or modified, the text based online charging sys-
tems are translated to machine language level by translators
known as compilers or interpreters, and subsequently imple-
mented on dedicated servers.

Today CSPs seek to build new or modify existing online
charging systems more quickly and cost effectively to retain
and grow their market share. In addition online charging
systems are becoming more complex as CSPs look to find
ways to differentiate themselves from their competitors.
Because online charging systems are becoming more com-
plex, building new or modifying existing online charging
systems is more costly, time consuming and can lead to sig-
nificant rises in operating expenses when built or modified
using traditional text based programming languages. The
costs and time to completion, however, can be significantly
reduced if graphical programming is used instead of text
based programming. Graphical programming lets users,
including non-technical users, more easily build or modify
programs such as online charging systems by graphically
manipulating program elements, such as nodes and data flow
connections, rather than by specifying them textually.

As the complexity and size of graphical programs that
represent online charging systems increase, however, graphi-
cal programming may introduce disadvantages. To illustrate,
when a developer seeks to modify a graphical program, the
developer may need to locate a particular node in order to
reconfigure it or otherwise modify it. Visually locating a node
of interest within a small graphical program is relatively easy.
It will be substantially more challenging for a user to visually
locate a particular node in a large, complex graphical program
that includes hundreds or thousands of interconnected nodes.
Large, complex graphical programs may also frustrate the
ability of a developer to quickly diagnose and correct glitches
with online charging systems as will be more fully described
below.

The present invention addresses these problems and others
by enabling a system and method for searching data (e.g.,
meta-data, configuration data, etc.) associated with nodes ofa

10

15

20

25

30

35

40

45

50

55

60

65

4

graphical program to identity nodes of interest. The present
invention will be described with reference to a graphical
program representation of an online charging system, it being
understood that the present invention may find application in
graphical programs that represent other types of systems.

Inone embodiment, the present invention provides a search
engine that can search data associated with nodes of interest
using user selected search filters and/or user entered search
criteria. The search engine can access associated data (e.g.,
configuration data, meta-data, etc.) corresponding to graphi-
cal program nodes in order to identify nodes that meet the
entered criteria and/or selected filter. Once identified, a list of
active links to the identified nodes can be presented to user via
a GUI. Moreover, the list can be presented while the GUI
displays a graphical program in which the identified nodes are
contained. The user can activate a link, and in response the
node corresponding to the activated link can be highlighted,
centered and/or brought into focus within a canvas panel of
the GUIL Configuration data, meta-data, user entered com-
ments, etc., associated with the node can be also displayed in
a separate inspection panel. Another benefit is that search
results (i.e., the displayed list of active links to nodes identi-
fied by the search engine) can be generated in real time.
Ultimately, the present invention may dramatically reduce the
time and effort needed to build new or modity existing online
charging systems.

FIG. 1 illustrates an example system 100 in which one
embodiment of the present invention can be employed. While
the present invention will be described with reference to the
figures in this document, it should be understood, however,
the claims filed in this document or any continuation appli-
cation should not be limited to the embodiments shown in the
figures or described herein.

System 100 includes several smart phones 102 that are
capable of accessing services (e.g., voice, data, etc.) provided
by a CSP via wired and wireless communication systems.
Customers are charged by the CSP via one or more online
charging systems executing or running on production server
104, which may be in data communication with smart phones
102 via wide area network(s) 106 and radio access networks
108. For the purposes of explanation only, it will be presumed
that production server 104 implements only one online charg-
ing system that takes form in instructions executing on one or
more processors. These instructions can be stored in memory
of server 104.

Production server 104 is in data communication with data-
base 110, which stores information related to each of the
customers and their smart phones 102. Customer information
may include customer account data, customer profile data,
service records, etc. The online charging system executing on
production server 104 is in data communication with data-
base 110 and can use the information contained therein dur-
ing online charging operations. The online charging system
may also update information in database 110 with each call or
other service request initiated by a customer. In one embodi-
ment, results generated by the online charging system may
depend on customer account and profile data. Service records
stored in database 110 often contain information related to
services such as telephone calls, including the origination and
destination of the call, the time the call started and ended, the
duration of the call, the time of day the call was made, a trace
(more fully described below), charges for the call, etc.

Production server 104 is in data communication with an
example online charging system development server 112,
which in turn is in data communication with a development
database 114 that stores graphical programs representing
online charging systems. FIG. 1 shows production server 104

US 9,342,277 B2

5

and development server 112 in direct communication with
each other. In another embodiment production server 104 and
development server 112 can be in data communication with
each other via wide area network(s) 106. Production server
104 and development server 112 can be owned by the same
business entity or separate business entities.

Each of graphical programs stored in database 114 can be
accessed and modified by a user via development server 112
and client computer system 116. A graphical program can be
built or modified using graphical programming tools, includ-
ing a graphical program editor, as will be more fully described
below. Once built or modified, a graphical program can be
tested on development server before it is compiled and imple-
mented on production server 104.

FIG. 2 illustrates in block diagram form relevant compo-
nents of the development server 112 shown in FIG. 1. Devel-
opment server 112 may include a graphical program editor
202, which may be implemented using a suitable combination
of hardware, firmware, and software. In one embodiment,
graphical program editor 202 may be implemented using
instructions executing on one or more processors of server
112. These instructions can be stored in memory of server 112
after being downloaded from another computer system (not
shown) via wide area network(s) 106.

Graphical program editor 202 enables a user of client com-
puter system 116 to create a new graphical program or modify
an existing graphical program stored within database 114.
Graphical program editor 202 includes a search engine 206
that will be more fully described below, and is coupled to an
interface module 208 that enables data communication
between graphical program editor 206 and client computer
system 116.

Graphical program editor 202 is capable of generating a
graphical programming GUI for subsequent display on client
computer system 116 via interface module 208. The GUI may
include several panels including a canvas panel that displays
a graphical program consisting of interconnected nodes. A
user can create a new or modify an existing graphical program
via the canvas panel by adding nodes, removing nodes, con-
figuring nodes, reconfiguring nodes, connecting nodes,
reconnecting nodes, etc. The GUI may include a search panel
that enables a user to interface with search engine 206 and
search for nodes of the displayed graphical program based on
user entry of search criteria and/or user selection of one of
several predefined filters. Search engine 206 can access and
search data (e.g., configuration parameters, meta-data, node
type, node name, node number, etc.) corresponding to dis-
played nodes of a graphical program in order to identify those
nodes that meet the selected filter and/or search criteria.
Search engine 206 gathers active links of the identified nodes
as a result of a search operation. The active links can be
displayed as a list in a results panel of the GUI in real time.
Because the active link list is displayed in real time, the
contents of the list may change as the user changes search
terms. An inspector panel displays information for a selected
node such as the name, comments, type, a listing of incoming
nodes and node exits (and which node they are connected to),
etc.

With continuing reference to FIG. 2, FIG. 3 illustrates an
example graphical programming GUI 302 displayed on client
computer system 116. GUI 302 includes a palette panel 304
that list files of nodes by type. As will be more fully described,
a user of GUI 302 can drag and drop instances of nodes from
palette 304 onto a canvas panel 306 during graphical program
development. The user can configure or reconfigure nodes on
canvas panel via a user interactive window. The user can
interconnect nodes on the canvas panel 306, which in turn

10

15

20

25

30

35

40

45

50

55

60

65

6

implements a control flow for the graphical program. The user
can change the view resolution of canvas panel 306. For
example, a user can contract (i.e., zoom in) or expand (i.e.,
zoom out) the view, which allows a user to see fewer or more
nodes of the displayed graphical program.

A user can search for nodes of interest displayed on canvas
306 using the search engine 206. This function can be
accessed via a canvas search box 310, which enables a user of
computer 116 to enter search criteria. Also, a drop down filter
menu 312 enables a user of computer 116 to select one or
several predefined search filters from a menu. The search
engine 206 uses the entered search criteria and/or selected
filter to identify one or more nodes with configuration data,
meta-data, node type, etc., that meets the search criteria and/
or selected filter. The data searched includes both data of
displayed nodes, and data hidden from view. Once identified,
the search engine 206 provides search results in the form of a
list of active links to the identified nodes. The list of links is
transmitted to the client computer system 116 via interface
module 208 for display in results panel 314. Each link dis-
played within panel 314 can be activated by the user. For
example, by clicking a link within panel 314 a corresponding
node within canvas panel 306 can be highlighted, centered,
and/or brought into focus via automatic zoom-in. Addition-
ally, information associated with the selected node can be
displayed in an inspector panel 316. The information may
include user entered comments for the node, type of node,
identification of imports that can be received by the node,
identification of outputs that can be generated by the node,
configuration parameters entered by a user for the node, a
listing of connected nodes at the input and output side, etc.
The node associated information displayed within the inspec-
tor panel may be edited by the user.

Graphical Program Creation or Modification

As noted a graphical program can be created or modified
by, for example, a user dragging and dropping instances of
nodes from palette panel 304 onto canvas panel 306, config-
uring or reconfiguring the nodes, connecting or reconnecting
the nodes, etc. FIG. 4 illustrates the GUI 302 shown in FIG. 3
with a window 404 opened to expose several different distinct
nodes that are contained within a file identified as “Base” of
palette panel 304. Instances of these nodes can be dragged
and dropped onto canvas panel 306. FIG. 5 illustrates the GUI
after a user drags and drops an instance of a “Start” node onto
canvas panel 306. Most graphical programs begin with a Start
node. In like manner, an instance of the “End” node can be
dragged and dropped onto the canvas panel 306 by the user.
Each graphical program created using editor 202 may include
several End nodes. Other nodes can be added to the graphical
program displayed within canvas panel 306. FIG. 6 illustrates
the GUI shown in FIG. 5 after an instance of a “Charging”
node is dragged and dropped. The Charging node, which may
be unique to online charging systems, functions to allow a
customer to continue a telephone call if the customer has
sufficient credit in his account or otherwise charges the cus-
tomer for the call once the call terminates. A user may connect
or reconnect nodes within the graphical program using flow
control lines. In this fashion, nodes of the graphical program
are placed in data communication with each other via control
flow lines such that the processing results of one node can be
transmitted and subsequently used by another node. FIG. 6
shows the GUI of FIG. 5 with example control lines added
thereto. The graphical program shown in FIG. 6 is elementary
in that it contains only three interconnected nodes. FIG. 7
illustrates the graphical program shown within FIG. 6 with
additional nodes added thereto. These additional nodes can
perform various processes or functions such as determining

US 9,342,277 B2

7

whether the customer should be sent a notification based upon
profile information for the customer, sending a text message,
etc.

A user can configure or reconfigure a node of a graphical
program. For example, a user can configure a node by defin-
ing configuration parameters or features using a pop-up win-
dow in response to double clicking the displayed in canvas
panel 306. FIG. 8 illustrates a pop-up configuration window
802 that enables a user to enter configure information for the
“Send Notification” node shown within canvas panel 306.
Once the user adds or modifies configuration information for
the node, the user can save the node’s configuration by acti-
vating the “Save” button within the pop-up window. During
implementation, a function implemented by a node depends
on the parameters or other configuration information entered
by a user for the node. In addition to displaying the pop-up
configuration window, information associated with the
selected node, such as the incoming nodes and the node
exists, can be displayed in inspection panel 316.

Complex graphical programs may contain hundreds or
thousands of interconnected nodes. FIG. 9 illustrates a small
portion of a very complicated graphical program displayed
within canvas panel 306. Although programming can greatly
reduce the effort and cost of building or modifying graphical
programs, as the complexity and size of graphical program
increase, disadvantages may be created for the user/devel-
oper. For example, as the complexity of a graphical program
increases, so does the difficulty for a developer to visually
locate nodes that need configuration or reconfiguration.
Node Searching

Search engine 206 can search data associated with nodes of
a displayed graphical program using search criteria specified
by auser and/or a filter specified by a user. The data searched
by engine 206 is stored in memory and includes configuration
data, meta-data, user enter comments, node type, node num-
ber, etc. Some of this data is user entered, while other data
may be inherited when the instance of the node that was
dragged and dropped. Search engine 206 can restrict the
scope of the search using a predefined filter selected by the
user. For example, with a filter setting set to “Charging
Nodes,” search engine 206 will search only data associated
with Charging Nodes of the displayed program in order to
identify those nodes with associated data that matches a
search criteria entered by a user into box 310. In accordance
with one embodiment of the present invention, search engine
206 can perform a live search on the node associated data. As
the user enter search terms, search results in the form of links
to nodes are displayed in real time.

FIG. 9 illustrates GUI 302 displayed on client computer
system 116 after a user opens up a more complex graphical
program. The view resolution of’is set to show only 9 nodes of
the graphical program that may contain hundreds or thou-
sands of interconnected nodes. Rather than attempting to
visually locate a particular node or group of nodes, a user can
use search engine 206. A first step may include the user
selecting an appropriate filter using the drop down filter menu
312. FIG. 10 shows a listing of example filters that can be
employed within one embodiment of the present invention.
Example filters include All, Name, Type, Node Number, Exit
Branch Name, Comments, Parameters, Unconfigured, Trace,
etc. The All filter is selected when a user wants to see any node
with associated data that contains the terms entered in search
box 310. The Name filter, when selected, will limit search
engine 206’s search to those nodes whose name contains the
terms entered in search box 310. The Type filter will limit
search engine 206’s search to those nodes whose type con-
tains the search terms. The Node Number filter will limit

25

30

35

40

45

8

search engine 206’s search to those nodes whose node num-
ber matches the criteria entered in search box 310. The Com-
ments filter will limit search engine 206’s search to those
nodes whose user-entered comments match the search terms.
The Parameters filter, when employed, will limit search
engine 206’s search to those nodes with text-based integra-
tion parameters containing the terms entered in search box
310. The Unconfigured filter, as its name implies, is used to
find all unconfigured nodes in the graphical program. The
Trace filter, when employed, identifies nodes corresponding
to a trace entered into search box 310 as will be more fully
described below. Additional filters are contemplated.

After a filter is selected by a user, the user can then enter
search criteria into search box 310. To illustrate, presume a
user enters “format™ into search box 310 with a filter setting
set to All. As the user types the text into the search box 310,
the search engine 206 can access database 114, which con-
tains information associated with the nodes displayed within
canvas panel 306, to identify all nodes that contain the user
entered text. Once identified, search engine 206 prepares a list
of active links to the nodes for subsequent display within
search results panel 314. As an aside, the content of the
displayed links may include identifying information such as
node numbers and node names. A user can activate one of the
links displayed within the results panel, which may prompt
editor 202 to highlight, center, and/or bring into focus the
node corresponding to the activated link. FIG. 11 illustrates
the GUI 302 shown in FIG. 10 after a user enters “Format”
into search box 310, and after the user activates the first link
displayed in the results panel 3124. As shown in FIG. 11, node
1004, which corresponds to the first link in results panel 314,
and its connections to other nodes are highlighted and cen-
tered within canvas panel 306. Additionally, inspector panel
316 displays some information for node 1004 such as the
node’s name, comments, type, incoming nodes, node exits,
etc. A user can modify information contained within inspec-
tor panel 316, or a user can add new information. Addition-
ally, a user can reconfigure functional aspects by double
clicking the highlighted node within canvas panel 306.
Double clicking the highlighted node results in a pop-up
window that displays parameters or other configuration data
for the node. The parameters and other configuration data can
be modified and saved by the user. A user can activate another
of the links contained within results panel 314.

Trace Searching

When the graphical program is created and finalized using
editor 202, the graphical program can be compiled and sub-
sequently exported for implementation on production server
104 shown within FIG. 1. During implementation, the online
charging system can process, for example, a request associ-
ated with a telephone call. The result generated by the online
charging system depends upon data contained within the
request, data contained within a profile for a customer in
database 110, etc. Because requests, data contained within
requests and data contained customer profiles all vary, the
trace or flow through the graphical program representation of
the online charging system may vary. With each request
received and processed by the online charging system, a
service record is created and stored within memory. This
service record may include a trace, which lists identities of
nodes in the corresponding graphical program that were
sequentially traversed when the online charging system pro-
cessed the corresponding request.

Online charging systems and their underlying graphical
programs often contain logic bugs. CPSs seek to review the
logic when glitches are discovered. A trace associated with a
glitch can be used to review the logic and identify a bug. To

US 9,342,277 B2

9

illustrate, a customer may complain that he was improperly
charged for a phone call, or that he received an improper text.
In response, a developer can retrieve a trace for the call in
question, enter the trace into the search box 310, and select
Trace filter from drop down menu 312. In response, search
engine 206, using the node identities contained within the
trace, generates a list of active links to nodes in the graphical
program that correspond to the trace identities, respectively.
This active link list can be displayed in the results panel.
Additionally, editor 202 can reconfigure the view of the
graphical program on canvas panel 306, highlight the nodes
identified in the trace, and highlight the connections therebe-
tween. This may involve resizing (e.g., zooming in or Zzoom-
ing out) so that canvas panel 306 displays all the highlighted
nodes. Any of the highlighted nodes contained within the
canvas panel can be activated by double clicking to produce a
pop-up window of associated information such as configura-
tion parameters for the node. Additionally, information asso-
ciated with the double-clicked node can be displayed in
inspector panel 316. A user can make modifications to the
information displayed in the inspector panel or information
displayed in the pop-up window. Using this method, a user
can more easily identify and correct bugs within the graphical
program.

Although the invention has been described in connection
with several embodiments, the invention is not intended to be
limited to the specific forms set forth herein. On the contrary,
it is intended to cover such alternatives, modifications, and
equivalents as can be reasonably included within the scope of
the invention as defined by the appended claims.

I claim:

1. A method comprising:

searching information stored in memory using search cri-

teria that was entered into a search box of a Graphical

User Interface, wherein

the information searched is associated with nodes of a
graphical program, the graphical program was cre-
ated by using one or more graphical programming
tools to add the nodes via the Graphical User Inter-
face,

the search criteria corresponds to a subset of the nodes
within the graphical program, the subset of the nodes
correspond to one or more of:
(a) a flow path through the graphical program; or
(b) text identified in the search criteria;

one or more of the subset of the nodes represents a
function that manipulates one or more input variables
and/or produces one or more output variables; and

identifying the subset of nodes, based on the search crite-

ria, by searching the information;

displaying search results comprising an identification of

one or more of the subset of nodes.

2. The method of claim 1, further comprising displaying
one or more links corresponding to one or more of the subset
of nodes.

3. The method of claim 2, further comprising:

in response to user activation of a first link of the one or

more links, displaying information related to a first node
of'the subset of nodes, wherein the first link corresponds
to the first node.

4. The method of claim 2, further comprising:

displaying the graphical program; and

in response to user activation of a first link of the one or

more links, highlighting a first node of the subset of
nodes, wherein the first link corresponds to the first
node.

10

15

20

25

30

35

40

45

50

55

60

65

10

5. The method of claim 2, further comprising:

displaying the graphical program; and

in response to user activation of a first link of the one or

more links, highlighting control flow connections to a
first node of the subset of nodes, wherein the first link
corresponds to the first node.
6. The method of claim 2, further comprising:
displaying the graphical program within a panel of the
Graphical User Interface; and

in response to user activation of a first link of the one or
more links, reconfiguring a resolution of the panel so
that a first node of the subset of nodes is centered within
the panel, wherein the first link corresponds to the first
node.

7. The method of claim 2, further comprising:

displaying the graphical program within a panel of the

Graphical User Interface,

wherein the one or more links are displayed in the GUI

concurrently with the displayed graphical program.

8. The method of claim 1, wherein the information
searched is limited to a subset of information that is defined
by a filter selected by a user.

9. The method of claim 1, further comprising:

compiling instructions stored in memory, wherein the

instructions represent the graphical program, and
transmitting the compiled instructions to a computer sys-
tem for implementation on the computer system.

10. The method of claim 1, wherein the search criteria
comprises a first set of node identities for a first set of the
nodes, respectively, within the graphical program, wherein
the first set of nodes represents a flow path through the graphi-
cal program.

11. A non-transitory computer readable medium compris-
ing instructions which, when executed by one or more hard-
ware processors, cause performance of operations compris-
ing:

searching information stored in memory using search cri-

teria that was entered into a search box of a Graphical

User Interface, wherein

the information searched is associated with nodes of a
graphical program, the graphical program was cre-
ated by using one or more graphical programming
tools to add the nodes via the Graphical User Inter-
face,

the search criteria corresponds to a subset of the nodes
within the graphical program, the subset of the nodes
correspond to one or more of:
(a) a flow path through the graphical program; or
(b) text identified in the search criteria;

one or more of the subset of the nodes represents a
function that manipulates one or more input variables
and/or produces one or more output variables; and

identifying the subset of nodes, based on the search crite-

ria, by searching the information;

displaying search results comprising an identification of

one or more of the subset of nodes.

12. The non-transitory computer readable medium of claim
11, wherein the operations further comprise displaying one or
more links corresponding to one or more of the subset of
nodes.

13. The non-transitory computer readable medium of claim
12, wherein the operations further comprise:

in response to user activation of a first link of the one or

more links, displaying information related to a first node
of the subset of nodes, wherein the first link corresponds
to the first node.

US 9,342,277 B2

11

14. The non-transitory computer readable medium of claim
12 wherein the operations further comprise:

displaying the graphical program; and

in response to user activation of a first link of the one or

more links, highlighting a first node of the subset of
nodes, wherein the first link corresponds to the first
node.

15. The non-transitory computer readable medium of claim
12, wherein the operations further comprise:

displaying the graphical program; and

in response to user activation of a first link of the one or

more links, highlighting control flow connections to a
first node of the subset of nodes, wherein the first link
corresponds to the first node.

16. The non-transitory computer readable medium of claim
11, wherein

at least one of the nodes supports a charging function, and

the charging function is related to charging a user for using

a service.

17. The non-transitory computer readable medium of claim
16, wherein the charging function is configured to allow the
user to continue the service if the user has sufficient credit in
an account associated with the user.

18. The non-transitory computer readable medium of claim
16, wherein the charging function is configured to charge the
user for the service after the user uses the service.

19. The non-transitory computer readable medium of claim
11, wherein the graphical program is configured for execution
on a single computer system.

20. A system comprising:

at least one device including a hardware processor;

the system being configured to perform operations com-

prising:

searching information stored in memory using search cri-

teria that was entered into a search box of a Graphical

User Interface, wherein

the information searched is associated with nodes of a
graphical program, the graphical program was cre-

10

20

25

30

12

ated by using one or more graphical programming
tools to add the nodes via the Graphical User Inter-
face,

the search criteria corresponds to a subset of the nodes
within the graphical program, the subset of the nodes
correspond to one or more of:
(a) a flow path through the graphical program; or
(b) text identified in the search criteria;

one or more of the subset of the nodes represents a
function that manipulates one or more input variables
and/or produces one or more output variables; and

identifying the subset of nodes, of based on the search

criteria, by searching the information;

displaying search results comprising an identification of

one or more of the subset of nodes.

21. The system of claim 20, wherein the operations further
comprise displaying one or more links corresponding to the
one or more of the subset of nodes.

22. The system of claim 21, wherein the operations further
comprise:

in response to user activation of a first link of the one or

more links, displaying information related to a first node
of the subset of nodes, wherein the first link corresponds
to the first node.

23. The system of claim 21, wherein the operations further
comprise:

displaying the graphical program; and

in response to user activation of a first link of the one or

more links, highlighting a first node of the subset of
nodes, wherein the first link corresponds to the first
node.

24. The system of claim 21, wherein the operations further
comprise:

displaying the graphical program; and

in response to user activation of a first link of the one or

more links, highlighting control flow connections to a
first node of the subset of nodes, wherein the first link
corresponds to the first node.

#* #* #* #* #*

